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TESTS FOR UNIFORMITY ARISING FROM A

SERIES OF EVENTS

1. INTRODUCTION.

A number of problems in statistics reduce to testing whether a set

of values comes from a uniform distribution: when the limits of this

distribution are A,B we write it as U(A,B). Most tests reduce to a
test for U(0,1). We concentrate here on test situations which arise
from examining the times at which events occur. The scientist records
these times on the time-axis: how should they then be analyzed?
If the events are governed by a Poisson process (that is, are occurring
. randomly in time), the intervals between events should have an exponential

distribution and should be independent. If not, certain alternatives are
often of interest. We therefore pose four questions which arise:

Question 1. Are the time intervals exponential, or

Question 2. Are the time intervals too regular or variable to be

exponential?
Question 3. Are the intervals independent?

Question 4. 1Is a cluster of events (or more than one) present”’

Formally, these problems can be set up in relation to the times of
events, as follows. Let 0 < T(l) < T(2) < see < T(n) be the times of

observed events, occurring with continuous observation in the interval

. = i = i 1 = M =
0,T); let U(i) T(i)/T, i=1l,...,n, and define L(O)"O and L(n+l)' 1.
Let the intervals between events be E, = T,..-T. . , for 1i=1,...,n+1,
Anrervals i (1) " i-1)

? i = = T: c i D = 1 =17

with T(O) 0 and T(n+l) Ty these lead to spacings Dy i) -1
. i=1,...,n+l, between the values U,,,, and D, = E,/T.

(1) 1 i
1
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Question 1 poses the question whether or not the Ei come from the

7 exponential distribution F(x) = l-exp(-x/8), x > 0; when thev do and
[ ]
y when they are independent, the transformation above gives a set U(i)
1]
N which are ordered uniforms from U(0,l). Thus the test for the Poisson
ﬁ process becomes a test of uniformity, specificallv, a test of
3
W
5
"’ HO: the U(i) are ordered uniforms from U(0,1).
‘
)
) The transformation from T(i) to U(i) effectively eliminates the
)
§
i? unknown parameter £, which is of course connected with the unknown Poisson
)

. process rate .

ien the times T(i) are given, it is very natural to examine the four

| PP
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In this article we discuss, in this context, many of the possible tests avail-

questions above by transforming to the U(i) and then making a test of H

S Y At
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able, and note some features which should be emphasized and on which further

-

-~

work is needed. For example, for some realistic alternatives some test statis-
» tics might have to be used with the lower tail whereas use of the upper tail is
customary, thus changing accepted power comparisons, or, for others, existing
results on power must be discounted because thev do not apply to the practical
alternatives. It mav even be, of course, that the best tests of questions

1 to 4 are not made at all by transforming to the U(i) and then testing H

0
1
! This article forms part of a volume in honor of Professor Herbert Solomon,
. and among the test statistics are some on which Protessor Solomon and 1
L)
. have worked together. These concern Neyman's tests and tests on spacings.
' 1 . . . . -
Perhaps we should also note that manv of the distributional properties of
tests ror uniformity invelve elepant geometric probability arzuments:
>
}
B 2
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Professor Solomon has maintained a long interest in this field (Solomon, 1978),

and it was myv work on the null distribution of the goodness-of-fit statistic
.2 . - ) e s - .
U”, using arguments of geometric probabilitv, which attracted his attention

and so began our association manv vears aso.

2. ALTERNATIVES TO UNIFORMITY.

We first consider some situations of interest in connection with Questions
1 and 2.

(a) Testing That Lifetimes Are Exponential. Suppose the times are

Ty

breakdown times for a machine because a part has failed; at each breakdown

the part is immediately replaced, so that the intervals Ei are the lifetimes
of the part.
It is common in reliability theory to test that such lifetimes are

exponential, and, assuming they are independent, the resulting T will

(i)
be a realization of a Poisson process. The lifetime distributions, alterna-

tive to the exponential, which one might wish to detect, are then often the

Weibull distribution

Fw(x) = 1—exp—(§) , X >0

and the Gamma distribution FG(x) = fg f(t)dt, where
=1 -t'z
f(e) = —2— 7T e s 0.
()

If the Ei are from F((x) or Fw(x), we describe the resulting

Di = Ei/l as scaled Gamma or scaled Weibull spacings; it will be important

et e
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that a test for uniformityv of the E(i) should be able to detect scaled
Gamma or scaled Weibull spacings. Wwhen <+ > 1, in both wWeitull and Gamrma
distributions, the lifetimes will be less spread out, for a given mean,
than if thev were exponential (the coefficient of variation is - 1, whereas

for exponential it is 1); we can call these lifetimes super-regular. Super-

regular lifetimes will produce a set t(i) which are excessivelv evenlw
spaced, more so than expected for a uniform sample. Stephens (1986b) calls

such U superuniform, and tests of HO, in this context, should be able

(1)

to detect superuniform U(i)' Superregular lifetimes might be expected to
occur, for example, if there is a nigh level of quality control for the

machine component. If vy < 1, the lifetimes are super-variable, and lead

to supervariable spacings between the U(i)'

In reliability theory an important feature of a distribution is the
failure rate, or hazard rate, given by b{(x) = f(x)/{1-F(x)}. A distribu-
tion with decreasing failure rate (a DFR distribution) is such that b(x)
decreases as x 1increases, and for an increasing failure rate (IFR) distri-
bution, b(x) increases with x. An exponential distribution has constant
failure rate 1/2 for all values of x; Camma and Weibull distributions
FG(x) and Fw(x) have DFR if , - 1, and IFR if , - 1. If lifetimes
Ei come from, sav, a DFR Wweibull distribution, the spacings hetween smaller
lifetimes are stochasticallyv smaller than corresponding exponential lifetimes
(that is, for the same n and i) and spacings between larper lifetimes are
larger than corresponding exponential spacings. This cannot easilv he
detected, in a sequence of eventsg, by looking at the lifetimes as naturallw
indexed »v time:; the lifetinmes . would first have to be ordercd 5y size,

[ . TR O i eyt e . A
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a mental picture of the relative sizes of exponential spacings.
However, the following transformation can be used. Let m = n+l; we
have m lifetimes Ei’ including the last (unfinished) lifetime T-T
Let E; = (m+l-i)(E(i)-E(i_1), where E(i) are the ordered Ei'
(i=1,...,m; E(O) = 0). 1If the original Ei were exponentials, the Ei
will be unordered independent exponentials with the same scale parameter

Z; but if the Ei were DFR, the E; will, on average, be increasins with
i. Correspondingly reversed results hold for lifetimes from an increasing
failure rate (IFR) distribution. Note that when the Ei are independent
exponential, giving rise to independent exponential Ei, these intervals
can be used tc construct '"times" 1! = E;, 1} = EJ+EX, 1),  =El+pL!+L!

(1) "1 T (2) 172 "(3) 17273

etc., and, by scaling to give U( ) = Tzl)/T(n+l)’ the Uki)’ i=1,...,n,

should be (ordered) U(0,1). Tests based on the U/ are often used to test for

(1)

exponentiality of the original Ei; however, we have now moved away from
the naturally occurring time sequence T, and we shall not consider

(1)

these tests at present: see Section 4.

(b) Testing That Lifetimes are Exponential, but with Average _ifetime

Changing with Time. Again let the times T(i) be breakdown times, and, for

a useful illustration, suppose they are mostly quite far apart. The life-
time of the replacement component might remain exponential as time passes,
but, perhaps for instance because of improved manufacturing methods, the
average lifetime (£) increases with time. On the whole, then, the Ei

are gradually becoming longer as time goes on; the process generating

the T(i) can be viewed as Poisson but with rate  no longer constant,
but taking value *(t) varvine with time. i'ne would then expect the
E(i)’ in this example, to be closer together at the left end (zero) than
at the right end (one).
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It might be worth observing that the distinction between the two
situations, (a) and (b) above, can easily be blurred by conventional
terminology. In (b), the machine breaks down less often if the component

has increased lifetime, and the machine might then be colloquially described

as having a decreasing failure rate (DFR). However, this is not the conven-

tional use of this phrase in the theoryv of reliabilitv.

In the lifetime model (b) just discussed, the exponential distribution
is not fixed, but is changing as time goes by; B is increasing, and hence
the spacings Ei are apparently getting longer. A graph of Ei against
i would be increasing, whereas if © remained constant the values should
hover around the horizontal line E = B. Also, if the Ei came from a
fixed Weibull or Gamma distribution, the Ei’ plotted against i, would
again be horizontal around the mean value of the distribution. Tests
might be based on such graphs: see Stephens (1986b) for further comment.

To sum up this discussion, we might detect Gamma or Weibull alterna-
tives by looking for supervariable or superregular spacings between the
U(i); or, when the spacings are superregular, bv looking directly for
superuniform U(i) themselves. If the lifetimes are exponential but with
changing 8, we must look for a drift of the U(i) towards one end or
the other. However, other methods may be better than any of these, as
we note in Section 4 below.

Of course, intervals can be superregular or supervariable without
coming from Gamma or Weibull distributions, and a distributional test
is not of primary interest. The events might be, for example, earthquakes,

eruptions of volcanoes, or signals from a "black hole". If these are not

Poisson, two important alternatives are that thev are occurring at Talrlc
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regular intervals, or perhaps the opposite; that is, the Ei are super-
regular, or supervariable (Question 2 above). Earthquakes may occur in
clusters, with several aftershocks and then long intervals between the
clusters; the Ei would then appear supervariable. Regular intervals

might be detected by eve, but overlv disversed intervals are much less

easy to observe.

Questions 3 and 4. It might also be of interest, in observing the Ti’
to detect a cluster, that is, a bunch of values too close to be repre-
sented by the same Poisson process as the others; for example, super-
imposed on random signals from the black hole, the friends of E.T. are
sending frequent messages for him to call home. Detecting one or more
important clusters will be very similar to detecting if the overall

interval pattern shows too much dispersion.

Finally, there might be situations in which the successive intervals
Ei are correlated, for example, a large one might tend to be followed bv
a small one. This could, for example, be the case when the Ei represents
lengths of reigns of monarchs, where a long reign is followed by a short

one because the heir is alreadyv older; in fact this mav explain whv the

dates of reigns of English monarchs appear to be superuniform (Pearson, 1963).

3. TEST STATISTICS AND THE VARIOUS ALTERNATIVES.

In this section we examine how well test statistics for uniformity

might be expected to detect the alternatives discussed in Section 2. The

[47)

given set of times Tti) will be assumed to Te converte. o uUniicrTes

U bv U = T, i=1,...,n, as« described above. 17 1 -

" (1) T(1) (i)’
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and ¢, a function of the 'j’ is a normalizing constant. The le:zendre
lwnomial - Arthoranal (0.1 1 I . 7w —qee
polwnemials are orthogeonal on (0,1) and, bv varvineg k. (%) mas -e
made to approximate ans civen altertocive as closelv as desired.  Cnicormite
4
requires that all .= 04 thus the test Hm can he put as a3 tesd that 1
: [
8
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known, we can take T = T(n)’ and have onlv n-1 wuniforms E(i)’ since

U(n) 1.) Test statistics for the null hvpothesis HO: the [ .. are

ordered uniforms from U(0,l), can be roughly classified into four families:
)

(1) the Pearson X~ statistic; (2) Nevman smooth tests; (3) EDF tests:

(4) tests based on spacings. Comments follow on each of these families,

and we shall finally concentrate on familyv (4).

2
(1) Pearson's X statistic. This reguires that the t(i) be classified
into groups, preferably groups of equal probability; thus the line (0,1)

is divided into k cells, and if Nj is the number of U(i) falling into

. 2 2
the j-th cell, Pearson's statistic is X~ = k :?_1 (Nj—l/k)‘ with asvmpto-

tically a Xi—l distribution. The grouping into cells loses much of the
information in the U(i)’ especially for a small sample, and the Xz-statistic
has low power against most alternatives. (Stephens, 1974; Quesenberry and

Miller, 1977). Also, as usually used, large values of X2 lead to rejec-

2

tion of H X" will not then detect super-regularitv of intervals unless

0’

small values are declared significant also.

(2) Neyman Smooth Tests. Neyman suggested that an alternative densitv to

uniformity for U could be written

k
£(x) = c exp{l1 + }

6.9«.()()}, 0< X < l’ k=l,2
J_l 1]

where il(x),Lz(x),... are Legendre polvnomials, are parameters,
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res

:§=l 9] = 0, Bv likelihood ratio methods, Nevman formed the test statistic
N = -k v:2 where v is a Nevman component dependent on o co (%)
N T fyal Vyro whe j ‘ 2 P 1=ty

The interesting point of this method, in the present context, is that the
first two components are functions of U and of the variance sz(f) =
Z(Ui-O.S)Z/n. A significant value for U might well occur in connection
with Question 1, if the lifetimes were exponential, but 3 was changing in
time; and a significant value for sz(U) might arise if there is a cluster
of events, or possibly negatively auto-correlated intervals, both tending to
give a small variance of the U wvalues. Percentage points for these
statistics are given by Stephens (1966). (Note that it is the variance
of the spacings Di which would be required to examine Question 2 — see
Greenwood's statistic below.) The individual components vj are normalized
to be N(0,1) asvmptotically; thev are then also independent, so that ior

2

large n, Nk % Xy - Some studies have indicated that N2 is a good test

statistic for gencral alternatives; the addition of further components can

7 2
often weaken the overall power of N~. However, N; approaches its

k
asymptotic distribution xi only slowlyv: Solomon and Stephens (1983) have
recentlv given percentage points of N2 based on fitting Pearson curves.
Curve-fitting using moments, to obtain percentage points, has been one of
our research interests in recent years (Solomon and Stephens, 1978), since

computers have made such techniques much more practicable. Further comments

on Neyman's statistics are in Solomon and Stephens (1983).

(3) EDF Tests. Tests based on the empirical distribution functicon are

becoming increasingly well-known. The most famous 7 these is ), the
Rolnozoraw statiscticy fo i- Compused fryon o= mam o =(i=13"r and
: i° i)
4
N e R AL A ; R R LIt TR L S N ol R SO N S PP AP JUECE
o et P e TR S P L S TN N N N e e e LY
1Y » R 5 . 3 ' 3 . h a




Carde & A

AP o

QRN A AL A,

[l T S Sy

«©

e
Tttt s

a aaa’N

2
. 2. . N - - .
onlv. (Note that U is a statistic calculated from the ") of the
al
sample; this terminology makes an unfortunate double use of U, hut {7

-+ - - -
3+ = maxi(i/n—t(i)); D= max(D ,D ). uUther statistics are V\V =D +D ;
N 2 o) 2 - ~

W= T-E(i)-(li-l)/(ZH)"-Fl/(IZn); U = W'=-n(U-1/2)", where
C = U . d
U _L(i)/n, an

R n

- = _! 'T 75 _ f . + ~ - ‘/1 _

A i;l(.l 1) 1log L(i) lo=(1 (n*l-i))J n-n

As usually used, all these statistics are significant with large values

is the usual name for this statistic so we retain it.)

+ -
Statistic D can be expected to detect a drift of t(i) toward O,

D a drift toward 1; however, if the direction of drift is not known,

D must be used, and then it will often be less powerful than Kz and,

more particularly, Az. As usually used, the statistics will not detect
excessive regularity in the intervals - this would produce smnall values of
the statistics, so lower tail tests must be considered. Autocorrelation

will tend also to produce low values of these statistics. A cluster

. .2 , . . c s .
might be detected bv U or V, with large values significant, since

rey

these detect change in variance or the l'-set. Further compariscns o

tests for these situations need to he made.

(4) Spacings. The final zroup of tests to be considered here is the group based

on the spacines .= E./7. Note that bhecause tae Ei are divided hv their
2pacin=s Jy i )

. ~-n+l . . .
total, the Di are not independent (“i-l Li=l), nor are thev distributed

exponentially on HO: the marginal distribution of anv one spacing is

Py = 1-(1-x)", 0 - x - 1. Creenwood (1946) was one of the first to

PTUpose o test stulisti. for testing Tor randoTie - Lt L LoD
10




process) based on the Di: Greenwood's statistic is G = ID?. This
statistic was investigated by Moran (1947,1953,1981); interest has revived
again in recent years, and percentage points for finite n have been

given bv Burrows (1979), Currie (1981) and Stephens (1981). There has also
been a great deal of interest in other functions of the Di (see Pvie, 1963),
and also in test statistics based on k-spacings. A k-spacing, for k fixed, is
Di,k = U(i+k)-U(i)’ i=0,1,...,n+l-k; clearly Di above is Di,l and for

this special case k=1 the second subscript will be omitted. Also Di,k

is the sum of adjacent Di’ and as i varies, the Di,k overlap: non-
overlapping spacings will be defined by D;,k = U(i+k)_t(i)’ i=0,k,2k, etc.
The k-spacings are sometimes called gaps or stretches. Much interesting

work on the properties of k-spacings and statistics based on these has been

done in recent years; for references see Stephens (1986a). Our interest

here will be to see how this work relates to the questions posed above.

Major families of test statistics based on spacings are:

(a) Greenwood's G and its extensions. The natural extension for &

< . 2 .
? is Gk =z Di K for fixed k=1,2,3, etc, with the sum defined over
! 1 ’
L"
7 the possible i-values, (G 1is then G,) or G* = 7 sz .
H 1 k ; i,k
* *
(b) Lk = -; loge Di,k or Lk = - i loge Di,k'
(c) M = max, D d M = min, D for gi
M ax, ik an Mk = min, ik or given k.

Statistic Ll was first suggested by Moran (1951) in connection with

testing for randomness of events. Ll is the Maximum Likelihood test

statistic for exponentialityv of intervals against Gamma alternatives, so

spect Lizh power tests of Question 1 against this alternative.
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by Also, ( is essentiallyv the variance of the spacings: n times the
N varidnee

variance is -1 (n+l), so ° mizht be usetful in discussing ‘Juestion
; 2. O the many results concerning spacings statistics we highlicht the
e tollowinu.,

(a) Percentage points for U (= Gl) have been referred to above. Points
: for ., and GB‘ and also for Ll' for finite n, have recently been
N 2
l: given by MclLaren and Stephens (1985). These were based on curve-fitting.

Gk converges to asvmptotic normalityv, but onlv very slowly: Ll converges

; also slowly, to a distribution approximated by a xz distribution.

tE (v) Surpose the alternative to uniformity is f(x) = 1*f(x)’nl/2i Cirtisov

S (1961) then showed the asvmptotic relative efficiency (ARE) of tests based on

;§ spacings to be zero compared to EDF tests. However, Weiss (1965) gives

- an alternative which reverses this result. Among spacings themselves,

- Cressie (1979) showed, essentially, that tests using Di,k were asvmp-

g

: totically better than those using Df for alternatives which were

2 i,k
step-functions, tending to the uniform like n-l/A, slower than Cibisov's,

: and among such tests Gk was better than Lk using ARE as criterion.

? However, this cannot be the whole story: we have alreadvy observed that

j L1 is the likelihood ratio test statistic in testing the spacings versus

” scaled Gamma spacing alternatives, and should have some optimal properties.

: The explanation appears to lie in the fact that the scaled Gamma spacings
alternatives do not give a density for U which is either on the Cibisov
or the Cressie model. Similar results appear to hold for Weibull spacings.

i: (c) McLaren and Stephens (1985) have investigated tests of H0 against

- the alternative that the Di are scaled Camma spacings (Duestion 1 above

‘? and the Gamma alternative) and have found 1_k better than e Molaren

. .

+ 12
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(1985) has calculated the ARE of Gk to Lk for this situation. The
ARE Ak of Gk to Lk is onlv 0.39 when k=1 (showing the expected

excellent performance of Ll) but increases to A5 = 0.74 and A10==O.85.
From Monte Carlo studies for finite n, the L-group <clearlv dominates the
G-group, and theyv both are better than EDF statistics. For detecting super-
variable spacings (from a Gamma distribution with 4 < 1), all these
statistics are used in the '"normal" way, with the upper tail significant.

For detection of super regular intervals, from, for example, a Gamma
distribution with vy > 1, which might well occur in practice, all the
statistics must be used with the lower tail significant. A possible test

, + . .
statistic for super regular intervals would be Mk' looking to see if the

largest k-spacing were too small.

In the above study on Lk and Ck’ the powers declined considerably
with increasing k. This seems reasonable; we know Ll to be the
Likelihood Ratio statistic, and unless the order in which the spacings

appear is held to be important, there is no reason why a statistic which

combines several in sequence should be especially effective.

(d) Autocorrelation. Quesenberrv and Miller (1977) introduced the

statistic

ntl
Q= D

i=1

+ D.D

i7i+l

(SR
(=N
ni-13

to test for uniformity taking into account the possibility of autocorrelation

”
between intervals. It is easv to see that G, = 2Q-DI-D

“

n+l? so that

asvmptotically @ 1is equivalent to (.. Mclaren and Stephens (1985) report

a studv on power of tests for autocorrelated intervals involving EDF

statistics and also Gl,uq,“J and L \,,LB. The alternatives to uniform




N,
S
)
ﬂ:
-
3 spacings (themselves dependent because :Di= 1) were autocorrelated scaled
o Gamma spacings. In this study, when correlation was positive, both the
“ﬁ Ck and Lk had power increasing with k; 62,63 and L2,L3 were better
E&. than all EDF statistics; L2 and L3 were best overall. All statistics
%: were very poor at detecting negative autocorrelation such as might be
‘ﬁ expected in some practical problems where large intervals are compensated
;k: by small ones. Detection of this effect needs further studv — in particular,
~ the statistic Q* = Z?=l DiDi+1 which forms part of Q might be effective
;ﬂ  standing alone.
E (e) Searching for a Cluster. The EDF statistics U2 and V, applied
b
ES to the set U, will tend to detect a cluster, or a separation into
125 two groups, one at each end of the (0,1) interval, since these statistics
= detect a shift in variance of the U(i) from the expected uniform value
Eé (Stephens, 1974) . Similarly the Neyman component v, will detect such
EE a shift in variance. However, the presence of a cluster may not influence
: the overall variance enough to register significance with these statistics,
‘is and it is natural to look at M; (to see if the minimum k-order gap is
':S too small) to detect a cluster. Cressie (1977) has also examined the scan
) statistic — the maximum number of observations NL’ in a window of width
;& L, as it moves along the (0,1) interval. Much work has been done, in
2: particular by Nauss, Weiss, and more recentlv Cressie, on statistics M;
 : and NL; see references in the paners cited in this subsection and in
\5 Stephens (1986a). As one might expect, there is a connection between the
e
: S two statistics: P(NL > x) = P(M; < 1) (Nauss, 1966), so that a test based
"' on one is equivalent to a test based on the other. Huntingdon and Nauss
Nd (1975) gave the exact distribution theory of M;, but the formulas are
N N A L e AN N VT T T
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difficult; Cressie (1977) has given asvmptotic theorv, that, on H

0’
?\n(1+1/k)M; X)) = exp(-xk/k!) as n - = (recall that n 1is the number
of uniforms U(i))' Cressie has shown that the power of M;, against a
stepfunction alternative tending to the uniform like n-l/a, is not as

good as that of Lm or Gm. For other alternatives to clustering, M;

may have greater power, although it may be difficult to define these. The
modelling of major earthquakes and aftershocks, where the aftershocks
produce a cluster, would appear to be a possible practical application. A
difficulty in applying these statistics is the choice of k, or the window
width L; for a-levels to be correct, this must not be decided after looking

at the times T(i) although this is a natural temptation. It would also be

valuable if a sequential test were available, first seeing if Ml is too

small, then MZ’ etc.

A test for super-regularity of spacings might be based on M; (to
see if the largest k-order gap is too small). Deken (1980) and Solomon
and Stephens (1981) have given distribution theory and percentage points
for Mk for n = 5 and 10, and Deken gives also a Beta approximation

for larger n. Similar remarks to those above apply to the choice of k,

and to the desirabilitv of a sequential test.

4, FINAL REMARKS,

In this article we have tried to draw attention to some of the out-

standing questions which arise when tests on a series of events are converted
to tests of uniformitv, There are manv wavs in which events mav depart
from a random sequence, and this means that test statistics which are

valuable for detecting one type of alternative wili not be valuable tor

15
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h' another, The choice of test statistics in some situations is still an cpen
E

-~ question. Among factors to be considered are (a) some statistics may be

L]

] significant in the tail not usually used; (b) some statistics mav have
4: a parameter which is difficult to choose (the order of Nevman's statistic,
A for example, or of a spacing or set of spacings); (c) existin: power
b

; studies may not be applicable to the alternatives of practical concern.
»
4 Two other important issues should also be raised. One is that, with
Y modern computer techniques, many statisticians will calculate many
)

¢ statistics and look at them all. Then the above factors, couched as they

W
u: are in the classical language of hypothesis testing, will be les- Inportant:

formal testing will not be applicable, since the final significance level

is impossible to determine, and the best way to use the statistics is

oL

to allow them, or their significance levels, to throw light on the data

in the knowledge of what different slternatives might be expected to give.

~

. Another question to be considered is whether or not it is alwavs

- . : ) ) . .
‘) useful to use the transformation to L(i)’ simple thouoh it ma »¢. It is
;' persuasive that to discuss autocorrelation, or a change in exponential
)
T parameter, or clustering, one would examine the times and time intervals
'~ in situ; it is not so clear that to test that intervals are exnrtonent La.
N with constant B8, as opposed, say, to Gamma or Weibull, one should keep
.'

the intervals as thev occur, and it may be best, for example, to look at

y them in order of size. The construction of E; and then E;i). in Section
f 2(a), uses the size order of the intervals, and an extensive literature

: exists on tests based on the E; or the Uzi); thev are related to the
PU total time on test statistics and have much merit in terms of power (for
:J some discussion sce Stephens, 14564,

]
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y Finallv, we should not forget the wider question which orften liex
-1

: behind statistical examination of events — how to model the events

-
Bt realisticallv. In all the applicaticns which have Seen alluded to here -
‘t' . . - 1. s - . . . . . . -
\ the incidence of disease, lifetimes in reliabilitv thecorv, signals from
4

» - -

» outer space, earthquakes, eruntion of volcances, anc ¢f course in manv
‘ . . . . I3

others, a good model will suggest preferential statistical techniaues.

< Some interesting comments on modelling, relevant to spacings statistics,
4

. are in the discussion to Pyke (1965) and the points made then are still
L]

»

- pertinent twentv vears later. This article merelv attempts to see what
¢

¢ different statistics might be expected to do for us, and to suggest, in
X
.ﬁ addition, where work still must be done.
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